
770 

Acta Cryst. (1962). 15, 770 

Stacking Faults and Two New Modifications of the Laves Phase  
in Mg-Cu-A1 Sys tem 

BY YUKITOMO KOMURA 

Faculty of Science, Osaka City University, Sugimotocho, Sumiyoshi-ku, Osaka, Japan 
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A ternary Laves phase, having a composition of approximately MgCuA1, was examined by the X-ray 
method. Diffuse scattering and superstructure reflections were observed between strong reflections 
due to C14 (2-layer type) and Ca6 (4-layer type). 

Two new types of modification were fotmd from the superstructure reflections; one is expressed by 
a rhombohedral 9-layer sequence such as AB'ABC'BCA'C or its reverse structure A'CA'C'BC'B'AB', 
with a unit cell a o = 12.97 A, a = 22 ° 50', which corresponds to a hexagonal unit cell with a 0 = 5.14, 
c o = 37.89 A. The other type is expressed by a hexagonal 5-layer sequence such as ABCAB" or its 
reverse structure AB'A'C'B', with a0=5.14, c0=21.05 A. Layer symbols A and A' used here 
denote two kinds of puckered close-packed layers sandwiched between kagom6 nets. 

General features of X-ray diffuse scattering observed are satisfactorily explained by a mixture 
of 9-layer sequences with stacking faults and disordered stacking of two 5-layer sequences. An 
extension of a theory developed by Kakinoki & Komura for the case of close-packed structures 
is applied. 

1. Introduction 

Binary intermetallic compounds known as 'Laves 
phases' are reported to have the following three 
closely related structures: (1) The C14 structure, 
typified by the hexagonal phase MgZn2, (2) the C15 
structure, typified by the cubic phase MgCu~ and 
(3) the C36 structure, typified by the hexagonal phase 
MgNi2. The close relationship among these structures 
can be easily understood from a few good reviews 
(Raynor, 1949; Berry & Raynor, 1953). However, 
the construction of these structures will be explained 
in a later section more precisely based upon stacking 
of layers. 

Laves & Witte (1936) investigated alloys lying along 
a section MgCu2-MgA12 to see the effect of changing 
the electron/atom ratio. When copper is replaced by 
aluminium, the cubic MgCu2 structure extends to 
about 1-80 electrons per atom, and is succeeded by 
the hexagonal MgNi2 structure up to 2.07 electrons 
per atom at high temperatures, or 1-88 electrons per 
atom at low temperatures. The hexagonal MgZn~. 
structure occurs between 1.88 and 2.15 electrons per 
atom at lower temperatures. Fig. 1 shows the schematic 
diagram of the structural change in these alloys. 

I I V//II//I/I/IIIII//////J 

1"33 1-80 1-88 2'07 2"15 electr°ns/atom 

From the inspection of Fig. 1 one can expect 
stacking faults to occur during the course of crystalliza- 
tion in the alloys of the system Mg-Cu-A1 whose 
electron/atom ratios lie between 1-88 and 2.07, because, 
as mentioned above, the stability regions of two of the 
fundamental  structures overlap at higher and lower 
temperatures in this range. In fact X-ray photographs 
of the alloys having their composition around this 
region showed not only strong reflections due to the 
fundamental  C14 and C86 structures, but also diffuse 
scattering indicating stacking faults along the hex- 
agonal c* direction; in addition they showed several 
superstructure reflections between main reflections of 
C14 and C86, which suggests existence of new modifica- 
tions. 

Methods for calculating X-ray intensities from 
crystals with stacking faults have been well established 
by several authors (Hendricks & Teller, 1942; Wilson, 
1942; Jagodzinski, 1949a, b,c, 1954; Kakinoki & 
Komura, 1952, 1954a, b) in the case of close-packed 
structures. 

The purpose of the present paper is to interpret 
the difftise scattering observed in the Laves phase, 
MgCuA1, in terms of ut~cking faults by extending the 
method used previously (Kakinoki & Komura, 1954b), 
which enabled us to determine, further, the structures 
of two new modifications from superstructure reflec- 
tions. 

L I MgCu2type 

+++-~+ Mg Ni2type 

r / / / / / / / / / / , , 'A  Mg Zn2 type 

Fig. 1. Structural change of Mg-Cu-A1 alloys 
as a function of electron/atom ratio. 

2. Exper imenta l s  

Alloys were prepared from pure magnesium (99.9%) 
and mother alloys which contained 50 at. % of copper 
and aluminium. The mother alloys were made in a 
kryptol furnace by mixing 99.99% aluminium with 
molten electrolytic copper. The composition was 
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checked by chemical analysis. They were then fused 
with pure magnesium in high alumina crucibles placed 
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Fig. 2. 20~ row line in an oscil lat ion p h o t o g r a p h  
a b o u t  the  c axis. 
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in a nichrome furnace at around 900 °C. and were 
allowed to cool slowly to room temperature. The 
preparation of ingots in vacuum was impossible 
because of the sublimation of magnesium, so that a 
flux (MgCle, NaC1 and KC1 mixture) was used in order 
to prevent oxidation of the alloys in the course of 
melting. Several alloys of Mg-Cu-A1, having their 
electron/atom ratios from 1.88 to 2.07, were made 
by melting accurately weighed quantities of mag- 
nesium, the mother alloys and, in addition, necessary 
amounts of copper and aluminium. 

Preliminary X-ray powder photographs showed that 
these alloys were fairly homogeneous with no indica- 
tion of the presence of any phase due to impurities. 
Well developed single crystals of hexagonal plate 
shape were found in the blow holes produced acci- 
dentally in ingots. Particular samples examined in the 
present paper have the electron/atom ratio 2.0 which 
corresponds to the chemical formula MgCuA1. 
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Fig. 4. 

Laue, oscillation, Weissenberg and precession photo- 
graphs were taken by Cu Ko~ radiation using tiny 
fragments cut from single crystals of MgCuA1, their 
linear dimensions being around 0.2 mm. An oscillation 
photograph about the c axis and a precession photo- 
graph about the a axis are shown in Figs. 2 and 3 
as examples. Strong diffuse scattering along c* indicat- 
ing stacking faults can be seen easily from these 
photographs as we expected. Superstructure reflections 
indicating new modifications are also recognized 
between main strong reflections which belong to the 
fundamental Cz4 and Ca6 structures. Intensity distribu- 
tions of diffuse scattering along c* were estimated by 
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Figs. 4 and  5. Sketches  of mic ropho tome te r  t races  for 10~ and 
205 row lines. Vortical  lines shown in the  upper  pa r t  of the  
figures indicate  the  posi t ions of Bragg  reflections of the  reg- 
ular  s t ructures .  

microphotometer traces. Since peaks or superstructure 
reflections were too intense to be estimated along with 
diffuse scattering from photometer traces, corrections 
were made by visual estimation using standard 
wedges. Sketches of these photometer traces for 
105 and 20~ row lines are given in Figs. 4 and 5, 
where ~ is the continuous co-ordinate along c*. Here 
the period c is taken for a layer thickness, to be 
described in the next section, so that  ~ is fractional 
for superstructure reflections.t 

3 .  A n a l y s i s  o f  t h e  s t r u c t u r e s  

(a) Description of the structures as layer stacking 

In  the structure of the Laves phases, there are two 
kinds of sheets; one is a denser layer forming kagom@ 

More precisely speaking,  ( s - - s0) /~  can be  expressed in 
t e rms  of the  basis  vec tors  a*, b*,  c* reciprocal  to a, b ,  c, using 
~, ~7, ~ as con t inuous  co-ordinates :  

(s - -  S0)/~ = ~a* + 7]b* + ~c*, 

where  s o and  s are uni t  vec tors  along the  incident  and  sca t te red  
directions,  ~L the  incident  wavelength .  Since there  is no 
d i s tu rbance  in the  regular  a r rangement  wi th in  a layer,  dif- 
f rac ted  in tens i ty  can be  observed  only  when  ~ = h ,  ~]----h, 
h and  ]c being a n y  integer,  b u t  ~ cont inuous  variable.  Symbo l  
hk~ used  hero has  the  above  moaning.  

(Frank & Kasper, 1959)--a net of triangles and hex- 
agons. The other is found between these kagomd 
nets, and consists of three triangular nets of magnesium 
and other metals stacked together in a close-packed 
manner. Fig. 6 shows the ways of stacking these nets, 
the distance from kagom~ to kagomd being taken as 
a unit, while distances from kagomg to each triangular 
net are indicated by fractions of the distance between 
two kagomd nets. There are two kinds of such stack- 
ings, their differences being the location of the 
triangular net placed at z = l / 2 .  Let us call these 
quadruple layers A and A'  respectively (Fig. 6), cor- 
responding to A and V, in Frank & Kasper's notation 
(1959). Hereafter these quadruple layers will be re- 
ferred to as though they were single layers. If the 
A and A' layers are shifted 1/3 or 2/3 in the [ l l0]  
direction of the hexagonal cell, we obtain B and B', 
or C and C' layers respectively. 

A B C 

---3 / - - T A U  
s d - - - - d  

A' B" C' /:-7 / - /  

0 Mg • small atom 

Fig. 6. Six fundamen ta l  layers  which are cons t ruc ted  b y  a 
kagom@ and three  t r iangular  nets.  P a r a m e t e r  z is t aken  as 
a f ract ion of the  dis tance be tween  two kagom@ sheets.  

Referring to Fig. 6 layer form factors A, A'~ By B'~ 
C and C' are given by 

VA = 2fa cos ~ + f b [ ( - - 1 ) h + ( - - ] ) k + ( - - 1 )  a-k] 
+fbs exp (i~/2), (1)t 

VA'= 2f~ cos ~ + f b [ ( - - 1 ) h + ( - - 1 ) ~ + ( - - 1 )  h-k] 
+f~e* exp (i~/2), (2)I" 

VB = VAe*, Vs. = V~,e*, Vc = VAe, Vc, = V.~.~, 
(3)t 

For  simplicity,  two Laue  funct ions  regarding a and b 
direct ions in the  layer  plane are omi t ted .  
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where s=  exp (2=i(h-k)/3),  phase shift ~ = 2=~, fa is 
the atomic form factor for magnesium and fo that  for 
smaller atom. 

I t  should be mentioned here that  when h - k = 3 n  
(n integral), s= 1, hence 

VA = V.4, = V~ = VB" = Vc = Vc, . 

From this relation we obtain 

I(h, h - 3 n ,  ~)= V*A V~ sin 3 ~N0~/sin 3 ~ ,  (4) 

irrespective of any stacking of A, A', B, B', C and 
C', No being the number of layers. Equation (4) gives 
maxima at ~ =integer, in agreement with the charac- 
teristic features of X-ray photographs. This is the 
reason why such layers as shown in Fig. 6 are adopted. 

On account of the spatial requirements of large 
magnesium atoms, for example, A can be followed 
only by B and B', the possible ways of layer stacking 
being shown in Table 1. 

Table 1. Possible ways of the layer stacking 

A / B  
C ( A ,  C'~B,  

Thus the fundamental three structures can be 
described as layer sequences. They are: A B '  for 
C14-MgZn9 structure, A B C  for C15-MgCu2 structure 
and A B ' A ' C  for C36-MgNi2 structure. We may call 
these three structures 2-layer, 3-layer and 4-layer 
types, respectively, from the point of view of layer 
stacking. 

(b ) Observed reflections 
X-ray photographs of MgCuA1 samples examined 

show the characteristic features for the row lines 
h, h - 3 n ,  ~ as mentioned before, but rather com- 
plicated features for other row lines as can be seen 
in Figs. 2 and 3. Strong Bragg reflections along other 
row lines are explained by the 4-layer type structure 
(2-layer type reflections are included), but several 
other superstructure reflections are found on the 
same row lines, which suggest the presence of new 
modifications. 

To each reflection in Figs. 4 and 5 is assigned a 
fractional index, ~, where the denominator is 

true Co for this phase/c for one layer ,  

and the numerator is the regular Bragg index referred 
to the true co. This convention is adopted in order 
to count easily the number of layers in the repeating 
unit. From the figures one can see that these reflections 

correspond to a mixture of a 9-1ayer type structure 
and a weak 10-layer type structure. 

By closer examination of reflections of higher order 
in h and k, it is found that  these reflections are split 
into two groups, in addition to the separation due to 
Kal  and Kag. doublets. One of these groups belongs 
to the 4-layer type structure, and is not accompanied 
with any diffuse scattering along the c* direction. 
The other group has a somewhat larger unit cell, 
and it contains all reflections due to the other modifica- 
tions such as 2-layer, 9-layer and 10-layer structures. 
Diffuse scattering accompanies this second group. 
Lattice constants of these two sub-unit cells were 
evaluated as follows: 

a0=5.11, c=4.17±0.01 /~, for the 4-layer structure, 
a0=5"14, c=4.21 ±0-01 J~, for other modifications, 

where c was taken as one layer thickness for the sake 
of comparison. From these observations it was con- 
eluded that  there were at least two different kinds of 
crystallites, their corresponding axes being parallel 
with each other. One of these has a perfectly regular 
4-layer type structure, so that  we will omit considera- 
tion of this kind hereafter. Since there are several 
modifications, the Bragg index 1 cannot be used in 
common for the different periods of the c axis, and 
attention is called to the index ~ so defined that  
identity period for the c direction is one layer in 
thickness. 

(c) Structure of the 9-layer sequence 
Reflections due to the 9-layer sequence should be 

generally found at ~=p/9,  p being any integer, but 
in the present case they are characterized by the 
following rules" (1) For h - k = 3 n  (n integral), only 
$=0,  1, 2, etc., can be found (equation (4)). (2) For 
h - k = 3 n +  1, ~=3p/9 are not observed. (3) Reflec- 
tions including diffuse scattering are symmetrical with 
respect to ~=0. From these observations the crystal 
must be a mixture of equal amounts of two rhombo- 
hedral cells, having the same structure but oppositely 
oriented. On the other hand it is concluded from 
Table 1 that  the rhombohedral cells of 9-layer type are 
only A B ' A B C ' B C A ' C  and A ' C A ' C ' B C ' B ' A B ' .  So the 
crystal should be a mixture of them. 

:By using equations (1), (2) and (3) structure factors 
of the two rhombohedral sequences can be expressed 
as the following equations" 

For A B ' A  BC 'BCA'C  
F1 = (1 + e* exp (i3~v) + e exp (i6~)) 

x (VA+ VB, exp ( i~)+ VA exp (i2~)) , (5) 

for A 'CA 'C 'BC'B 'AB '  
F2 = (1 + e exp (i3~) + e* exp (i6~)) 

(VA, + Vc exp ( i~)+ VA, exp (i2~)), (6) 

in which fb in equations (1) and (2) is taken a mean 
of the atomic form factors of copper and aluminium, 
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since it is assumed here that  copper and aluminium 
are randomly distributed among the positions where 
smaller atoms should be. Comparisons are made in 
Fig. 7 for the observed and calculated intensities of 
10~ and 20~ reflections as representative examples; 
agreements between these values are fairly good.t 
Diffuse scattering accompanying these reflections will 
be discussed in the next section. 
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Fig. 7. Comparison of the observed and calculated intensities 

of the 10~ and 20~ reflections as a mixture of two regular 
9-1ayer structures AB'ABC'BCA'C and A'CA'C'BC'B'AB'. 

Reflections located very close to ~=2/9  and 7/9 
which are measured as 2/10 and 8/10, and the ac- 
companying broad maxima at around ~=3/10, 4/10, 
6/10 and 7/10, are designated as a sort of disordered 
stacking between two 5-layer sequences of A B C A B '  
and A B ' A ' C ' B ' .  The reason for this is that  the spacings 
of those reflections correspond to a 10-layer sequence 
and especially odd multiples of 1/10 of ~ are rather 
diffuse. The detailed discussions will be given in a 
later section. 

4. Interpretation of diffuse scatter ing 

The diffuse scattering accompanying the Bragg re- 
flections is observed extending along the c* direction, 
except for h - k  = 3n, where only sharp reflections are 
found at integral values for ~. Such a feature of the 
diffuse scattering can be interpreted as the effect of 
stacking faults. The solution of this problem will be 

t Lorentz and polarization corrections do not differ so 
greatly from reflection to reflection in the range we consider, 
that these corrections are neglected at the present stage. 

given as an improvement of the matr ix  method 
(Kakinoki & Komura, 1954b) which has been applied 
to the case of close-packed structures. 

(a) 9-layer sequence with stacking faul ts  

Intensi ty distributions of the diffuse scattering 
along c* have maxima at positions corresponding to 
the 9-layer structure. These broad maxima extend to 
maxima corresponding to the 2-layer structure, so 
that  let us consider first the stacking faults of the 
9-layer sequence which is mixed slightly with the 
2-layer structure during the course of crystallization. 
Many authors call this sort of disorder the growth fault. 
In  order to make up a P matr ix such as shown in 
equation (7), three layers are coupled so that  the 
9-layer and 2-layer structures may be found for 
extreme cases. 

p 
A B ' A  A ' C A '  B C ' B  B ' A B '  C A ' C  C'BC'  

A B ' A  - 1 - (5 (5 7 
A ' C A '  (5 1 - ( 5  | 

B ' A B '  (5 1 - (5 i i ...] ' 

. . . .  I . . . . .  . . . . . . . . . .  . . . . . . .  : ................................................................. ' ]  
C'BC' I (5 1-(5 J 

(7) 

in which the st-element indicates the probabili ty of 
finding the layer of t-kind after that  of s-kind, and 
blank positions of this matr ix are all zero which means, 
for instance, A B ' A  layer can not be followed by any- 
one of the other layers except for B C ' B  and B ' A B '  
layers as seen from Table 1. An extreme case when 
(5--0 corresponds to the mixture of the two regular 
9-layer structures 

A B ' A B C ' B C A ' C  and A ' C A ' C ' B C ' B ' A B ' .  

Oll the other hand when 5=  1, the regular 2-layer 
structure A B ' A B ' A B '  . . .  (which is equivalent to the 
structure A ' C A ' C A ' C . . . )  is obtained. In this sense 
we may call (5 a stacking fault probability of 9-layer 
sequence. 

The general intensity equation for X-rays diffracted 
by a disordered crystal can be given by (Kakinoki & 
K0mura, 1952, 1954b) 

.V--1 

I = N spur VF + ,~ ( N - m )  spur VFP m exp (- iraqi)  
~q'~. = 1 

+ conjugate, (8)t 

where V and F matrices are in this case as follows: 

V =  ev v e*v , v =  V~'V1 VffV2 " (9) 
8 * V  8 V  V 

t The diffracted intensity I is measured in electron unit. 
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,(o 0o)(w 0) ~ =  W , W---- • 
0 wg. 

(10) 

Here, V1 and Ve are the layer form factors of coupled 
three layers of A B ' A  and A'CA'  respectively, so tha t  
their expressions are derived from equations (1), (2) 
and (3) as 

V1 = Va + VB' exp ( i9 )+  VA exp (i2~) 
= VA+ Va.e* exp ( i ~ ) +  VA exp (i2~v) , (11) 

V~= VA" + Vc exp (iq0)+ VA, exp (i2~0) 
= VA' + VAe exp (iq0)+ VA' exp (i2~) . (12) 

In  equation (10), the F matr ix  is expressed in the 
same way as in the close-packed structure, lwl and 
½w2 being the probabilities of finding coupled layers 
of A B ' A  and A'CA'  at any j t h  layer respectively. 
Since the layers having their origins at  (0, 0, 0), 
(2 ~, ½, 0) and (½, ~,e 0) can be thought  as equivalent to 
each other, the F matr ix is divided by the three 
identical minor matrices, as shown in equation (10). 
In  the case of growth fault wl and we can be taken 
as equal; i.e., wl=w~.=-½ unless 5=0 .  The phase shift 
due to a coupled layer was taken as three times tha t  
of a single layer. The P matr ix may be put  in an 
abbreviated form as follows: 

where P =  0 , 

1 - 5  6 ) 
P =  0 0 

(13) 0) 
d 1 - ~  

I t  can easily be shown tha t  spur VFP ~ can be 
reduced to a rather simpler form when V, F, P are 
substi tuted by equations (9), (10) and (13), as follows: 

spur VFP ~ (v 0o)(i i,; -=½spur ev v e* 0 w ' 0 
e*v ev 0 0 p '  

= spur vw (ep + e*p') m (14) 

'When the matr ix ( e p+e *p ' )  is diagonalized, then 
spur v w ( e p +  e*p') m can be written as 

S 

spur vw(ep  + e*p') m = .,~,c~x~, (15) 
v = l  

where x~'s are the elements of the diagonalized matr ix 
of ( ep+  e*p'). Hence, x~'s can be obtained by solving 
the following characteristic equation, 

det (ep+ e * p ' - x l )  = e ( 1 - 6 ) - x  e6 [ =  0 
e*(1 - 5 ) - x  

(16) 

Also c~'s in equation (15) are obtained by solving the 
following simultaneous equations- 

cl + co. = spur vw = ½(V* V1 + V* V2) 

xlcl + x~c2 = spur vw (ep + e*p') 
= ½ {e(1-  gt)V~VI + e*(SV*~V2+ eSV*~V1 

+ e * ( 1 - ~ ) v * v 2 }  , (17) 

where w is taken as wl =w2 = ½ as mentioned before. 
Thus the intensity formula (8) can be writ ten more 
simply by the use of the above relationships as follows" 

_Y--1 

I =  (N/2)(v* vl + v* v2) + 2 ( N -  m) 
m = l  

2 

x exp ( - im399) .,~ cvx~+ conjugate, (18) 

where N is the number of coupled layers in the crystal, 
hence 3N=No.  

Thus the results obtained from equation (18) are 
summarized as follows: 

(1) For h - k = 3 n ,  

I =  V*V sin 2 N-~9/sin 2 { ~ ,  (19) 
where 

V =  VI= V2=(1 + e x p  (i~) +exp  (i2~c)) 

× {2f. cos ~ + f ~ [ ( -  1 ) h + ( -  1 ) ~ + ( -  1p-~] 

+f~ exp (i~/2)}. 

This means tha t  neither diffuse scattering nor Bragg 
reflection can be observed along c* except for reflec- 
tions at cp=2zp, p being any integer. This equation 
is the same as equation (4) and agrees with the 
observation. 

(2) For h -  k = 3n_+ 1, 

summation of the intensity equation (18) can be 
carried out when x~'s and c~'s are evaluated from 
equations (16) and (17). I t  is the sum of two terms 
which are expressed as 

I = N D + H  , (20) 
where 

x, exp (-- i3~0) + conjugate, 
D =..~,c~+.~c~v ~ 1 - x ,  exp (-i3~c) 

and 

x N+I exp ( - i 3 ( N +  1)9)-x~ exp ( - i 3 9 )  
H = ~ cv (1-x~ exp ( - i 3 ~ ) )  2 

+ conjugate. 

We call the first term the diffuse term and the second 
the higher term. In  general Ix~[ < 1 ; therefore the higher 
term is negligible compared with the diffuse term since 
N is supposed to be very large. 

The final formula for the diffuse term can be 
given by 

6 ( 1 -  a){2 V* V~ + e* V* V~ + e V* V~ + 2 V* V~ 

+2Ur cos 3 ~ - 2 U ,  sin 39} (21) 
D =  1 -- 2~+56e +4(1 -- 6) 0. × cos 390 

+4(1- -25)  cos 2 3 9 
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where  Ur a n d  U~ are t h e  rea l  a n d  i m a g i n a r y  pa r t s  of 
( -  e V1 + e* V~) ( V ~ -  V~) respec t ive ly .  I n t e n s i t y  distr i -  
bu t ions  a long c* are ca lcu la ted  b y  e q u a t i o n  (21), a n d  
t h e y  are shown  in  Figs.  8 a n d  9 for 10~ a n d  20~ up  

j 
lot; 

¢ . -  

m 

¢ -  

o h0 80 120 160 200 

Fig. 8. 

C a ) 

(b) 

(c) 

2~o 2~o 3~o 3~,o ° 

to  $ =  1 a t  var ious  va lues  of the  s t ack ing  f au l t  prob-  
ab i l i ty ,  5 . t  

(b) Disordered stacking of two 5-layer sequences 
There  are on ly  two k inds  of regu la r  5- layer  sequences  

which  can be cons t ruc ted  b y  the  s t ack ing  of l aye r s  
A,  B, C, A' ,  B'  a n d  C' if we obey  t h e  ru le  m e n t i o n e d  
in  Tab le  1. These  are A B C A B '  a n d  i ts  reverse  s t r u c t u r e  
A B ' A ' C ' B ' .  X - r a y  i n t e n s i t y  fo rmula  due  to  t h e  dis- 
ordered  s t ack ing  of these  two s t ruc tu res  is qu i te  
ana logous  w i t h  t h e  example  dea l t  w i th  in  t h e  p rev ious  
pape r  (refer to  e q u a t i o n  (42) of K a k i n o k i  & K o m u r a ,  
1952). 

Thus  de r ived  i n t e n s i t y  fo rmula  is 

I =  ¼(V~* + V~)(V1 + V2) (sin 2 N'-~cf/sin 2 -~cf) 
+ 1  , ~(V1 - V2*) (V1 - Vz) {N'(1 - x~)/(l + x ~ -  2x cos 5~) 

+ h igher  t e r m } ,  (22) 

where  5 N ' = N o ,  x = -  ( 1 - 2 a ) ,  a n d  ~ is t h e  s t ack ing  
fau l t  p r o b a b i l i t y  of t he  sequence 

A B C A B '  - A B ' A ' C ' B '  - A B C A B '  - . . .  ; 

lo; 

I I (a) 
2o~" 

20~" 

0 ° 40 80 120 160 200 240 280 320 360 ° 
9' 

Fig. 9. 

Figs. 8 and 9. Calculated intensity distributions along 10 ~ and 
20~ row lines for the 9-layer structure with stacking faults, 
(3 being the stacking fault probability. (a) 5 = 0.1. (b) ~ --- 0.2. 
(c) c$ = 0.3. 

[_..__....__.t__.A~ I (b) 

I A I 

I 
! 

0 ° ~.0 80 120 160 200 240 280 320 360 ° 
q~ 

Fig. 10. Calculated intensity distributions along 10~ and 
20~ row lines for the disordered stacking of two 5-layer 
sequences, a being the stacking fault probability. (a) a = 0.1. 
(b) a=0"2. 

There is another way to calculate the diffuse term of 
equation (20) without solving equations (16) and (17). The 
idea is to use the relationship between the roots and the 
coefficients of the characteristic equation (16). This is par- 
ticularly useful when the order of the characteristic equation 
becomes higher. The detail will be discussed in separate paper 
(Kakinoki, 1961 ). 
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i.e., ~ = 0  for 10-layer structure and  ~ = 1  for a 
mix ture  of two 5-layer structures. The higher te rm 

>-- lO~"  

(a) 

(b)  ..--. 

I [ (c) 
! i , i 

40 8; '120 160 200 210 2;0 

Fig. 11. 

360 ° 

0 ° 40  80 120  

20~; 

1 change of 
" - -  - -  s c a l e  

b 
a) 

io 200 2i0 2so 320 360 ° 
q~ 

Fig. 12. 

Figs. 11 and 12. Comparison of the observed and calculated in- 
tensity distributions of 10~ and 20~ row lines. (a) Observed 
curve. Bragg reflections due to the regular 4-layer structure 
are omitted in order to avoid unnecessary complication. 
(b) Calculated curve for the 9-layer sequence with stacking 
fault ~= 0.I. (c) Calculated curve for the disordered stack- 
ing of two 5-layer sequences with .x----0.2. 

in equat ion (22) can be neglected unless ~ is very 
close to zero. Vz and V2 are expressed in this  case 
as follows : 

Vz = VA + VB exp ( i ~ ) +  Vc exp (i2~) 
+ VA exp (i3~) + VB, exp ( i4~) ,  (23) 

V2 = V.4 + VB" exp ( i ~ ) +  VA, exp (i2~) 
+ Vc, exp ( i 3~ )+  VB' exp (i4q0) . (24) 

When  h - k = 3 n ,  Vz= V2, hence equat ion (22) turns  
to equat ion (4). In tens i ty  distr ibut ions along 10~ and 
20~ calculated from equat ion (22) are plot ted in Fig. 10 
for ~ = 0 - 1  and 0.2. In  these figures thick vertical  
lines show Laue functions in equat ion (22) in a 
somewhat  a rb i t ra ry  scale, because no informat ion is 
available for the number  of layers N' ,  bu t  this number  
cannot be large since the observed reflections of 
~=4 /10  and  6/10 are ra ther  diffuse. 

Figs. 11 and 12 show comparisons between the 
observed and  calculated in tens i ty  distr ibutions.  The 
calculated curves due to 9-layer sequence with stacking 
faults  and  the disordered stacking of two 5-layer 
sequences are drawn separately for convenience'  sake 
in these figures as curves (b) and (c) respectively. 
The ratio of the  contr ibut ion of both structures is 
adjusted,  so tha t  observed in tens i ty  m a y  be compared 
direct ly with the  calculated curves. Qual i ta t ive agree- 
ments  between observed and calculated in tens i ty  
dis t r ibut ions are sat isfactory when the stacking faul t  
parameters  are taken  as 6=0-1 for 9-layer sequence 
and c~ =0-2 for 5-layer sequences. 

5. D i s c u s s i o n  

Two new modificat ions having  rhombohedra l  9-layer 
(a0-- 12.97 J~, a = 2 2  ° 50', hexagonal  latt ice constants 
a0 = 5.14, Co = 37.89 •) and hexagonal  5-layer (a0 = 5.14, 
c0=21.05 /~) sequences were found in the te rnary  
Laves phase of MgCuA1 in addi t ion to the regular 
4-layer structure. Fig. 13 shows these new structures 
based on the hexagonal  cell, in which large white 
circles indicate the positions of magnes ium atoms and 
small  black circles show other meta l  positions. Diffuse 
scattering was also observed and satisfactori ly inter- 
preted as due to stacking faults  related to two kinds 
of 9-layer sequences and due to the disordered stacking 
between two 5-layer sequences. Regarding the inten- 
s i ty dis t r ibut ion the theory of X-ray  diffraction 
applied to close-packed structures was extended to 
the case in which there were two sets of layers,  
(A ,B ,  C) and ( A ' , B ' ,  C'). In  this calculation an 
essential factor is how to combine these six layers 
to construct Vz and  V2. For instance, the 2-layer 
structure is by  no means  obtained from any  other 
combinat ions  for Vz and Ve t han  those given in 
equations (11) and  (12). Wi th  respect to this  point  
a discussion will be made  in a separate paper. 

Many trials were needed in order to get the f inal  
result  because the observed in tens i ty  distr ibut ions 
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(a) (b) 

0 / r i g  • Cu or AI 

Fig. 13. The structure of two new modifications of the Laves 
phase, MgCuA1. (a) 5-layer type, ABCAB'. (b) 9-layer type, 
AB'ABC'BCA'C. 

were so complicated that  they could not be explained 
without considering the sample as a mixture of several- 
kinds of crystallites with different structures men- 
tioned above. The values of ~=0.1 and c~ =0.2 may 
have some allowance as can be inferred from the fact 
that other samples having approximately the same 
composition show a little different intensity distribu- 
tion, as well as from the fact that there are still, in 
the present sample, slight discrepancies between 
observed and calculated intensity distribution. How- 
ever, the results that faults are found among such 
kinds of coupled layers as shown in equation (7) and 
that  the disorder occurred betweea Vt and Vz in 
equations (23) and (24) will not be changed. 

There still remains a possibility of explaining the 
whole intensity distribution by an unified model in 
which the two modifications are combined. In this 

connection, the idea of the Fourier transformation of 
a diffuse line (Kakinoki, 1961) may be a helpful 
approach. Moreover, a sort of modulated structure 
similar to the case of the Cu-Ni-Fe alloys (Hargreaves, 
1951) may occur in the present alloy too. :But even 
so, other models which may be obtained cannot differ 
greatly from the model given here. 

Considering complexity of the obtained structures 
there may be some other modifications even for the 
samples having approximately the same composition 
but it needs many more experiments to find out and 
confirm all possible modifications. 

In the present paper no attention has been paid to 
the ordering of copper and aluminium atoms. I t  is 
possible to treat the effect of ordering, but very 
accurate estimates of the intensities of reflections 
should be required, and the experimental difficulties 
would be great. An at tempt is in progress to control 
the degree of stacking faults by means of annealing 
the alloys in order to elucidate the nature of the 
stacking faults. Ordering of the copper and aluminium 
atoms might be discovered in the process of such 
experiments. 
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